Synchronization of coupled active rotators by common noise
نویسندگان
چکیده
منابع مشابه
Noise-Dependent Stability of the Synchronized State in a Coupled System of Active Rotators
We consider a Kuramoto model for the dynamics of an excitable system consisting of two coupled active rotators. Depending on both the coupling strength and the noise, the two rotators can be in a synchronized or desynchronized state. The synchronized state of the system is most stable for intermediate noise intensity in the sense that the coupling strength required to desynchronize the system i...
متن کاملA new approach to partial synchronization in globally coupled rotators
We develop a formalism to analyze the behaviour of pulse–coupled identical phase oscillators with a specific attention devoted to the onset of partial synchronization. The method, which allows describing the dynamics both at the microscopic and macroscopic level, is introduced in a general context, but then the application to the dynamics of leaky integrate-and-fire (LIF) neurons is analysed. A...
متن کاملUnderstanding synchronization induced by “common noise”
Noise-induced synchronization refers to the phenomenon where two uncoupled, independent nonlinear oscillators can achieve synchronization through a “common” noisy forcing. Here, “common” means identical. However, “common noise” is a construct which does not exist in practice. Noise by nature is unique and two noise signals cannot be exactly the same. How to justify and understand this central c...
متن کاملPhase synchronization of chaotic rotators.
We demonstrate the existence of phase synchronization of two chaotic rotators. Contrary to phase synchronization of chaotic oscillators, here the Lyapunov exponents corresponding to both phases remain positive even in the synchronous regime. Such frequency locked dynamics with different ratios of frequencies are studied for driven continuous-time rotators and for discrete circle maps. We show t...
متن کاملExperimental synchronization of circuit oscillations induced by common telegraph noise.
Experimental realization and quantitative investigation of common-noise-induced synchronization of limit-cycle oscillations subject to random telegraph signals are performed using an electronic oscillator circuit. Based on our previous formulation [K. Nagai, Phys. Rev. E 71, 036217 (2005)], dynamics of the circuit is described as random-phase mappings between two limit cycles. Lyapunov exponent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2017
ISSN: 2470-0045,2470-0053
DOI: 10.1103/physreve.96.062204